HOW TO BUILD A STRUCTURE TESTER

Introduction

First, ANYONE can build the Structure Tester. While some teams will elect to build their own Structure Tester, there is no danger of “interference” if the Team Manager (or a helpful parent) builds the Tester. In addition, it is perfectly acceptable to borrow a Structure Tester from somebody else. How the team TESTS their design is not part of their solution. However, since issues like weight placement (and weight order) ARE part of the team’s solution, any help the team gets during testing should be of the “passive lifting” variety.

Tournament officials will provide the Structure Tester and all weights used to test the Structure at the tournament. This means that teams may NOT elect to use their own Structure Tester and weights during the tournament. However, it is still a good idea for the team to get access to a tester (and weights) to test their practice Structures.

It is recommended that weights with a 2” hole in the middle be used at tournaments. While these might be harder for teams to find for testing, it is a good idea to approach testing as much like it will done on tournament day as possible. For tournaments, it will be recommended that an assortment of 5lb, 10lb, 25lb, 35lb and 45lb weights be available to total the expected maximum allowed in various combinations (this can change each year).

With that introduction as background, there are 3 elements to a Structure Tester:

1. Pressure Board
2. Tester Base
3. Safety Support

This document attempts to provide a step-by-step approach to building each of those elements. There is no one “correct” way to build a Structure Tester – so this document will try to offer a simple approach that will be easier to implement. Finally, the most important Structure Tester for the team to become familiar with is the one that will be used at their tournament.
Building the Pressure Board

The Pressure Board is 18” x 18”, has a 2” diameter hole cut in the center and has a smooth, hard surface on the bottom. The Pressure Board must be strong enough that it can transfer the load of the metal weights stacked on it to the Structure (and the Safety Support after the Structure breaks) without significant flexing.

High quality 3/4” thick 5-ply hardwood plywood is probably the best material to use to build the “structural body” of the Pressure Board. Hardwood plywood costs ~$50 per 4 x 8 sheet. Consequently, some teams may elect to use Medium Density Fiberboard (MDF) (which costs less than $20 per sheet) instead. Particle board or low-grade plywood should NOT be used.

People with limited access to tools might want to buy a whole 4 x 8 sheet of hardwood plywood (or MDF) and have the lumberyard cut it into 18” squares. Cutting uniform 18” squares is VERY challenging without the right tools – and many lumberyards will do it for free (or at least cheaply). A couple of 18” squares of “tileboard” (which is coated 1/8” MDF) or 1/8” High Density Fiberboard (HDF, commonly referred to as masonite) are needed to provide the “replaceable hard surfaces” of the Structure Tester. Since these “replaceable hard surfaces” have to be replaced occasionally, it might be a good idea to buy a large sheet of this material and have the lumberyard cut that into 18” squares as well.

Figures 1 and 2 provide crude side and top views of the Pressure Board. Line two 18” squares of plywood up and clamp them together. Drill countersunk pilot holes through the two boards at various locations (see Figure 2). Unclamp the two boards and apply a “wood glue” liberally between them. Screw the two boards together and allow to dry. Fasten (small screws) an 18” square of “tile board” to the side opposite of the one where the screw heads are showing (see Figure 1). The hardest surface of the tileboard should be showing. Since the “replaceable hard surface” might have to be replaced, it would be a mistake to glue it to the rest of the Pressure Board. Place the screws near the outside edges so the heads are not where the structures will rest.

The final action is to drill the 2” diameter hole through the center of the Pressure Board. Using a pencil, draw lines between opposite corners on the tileboard surface. This makes a big “X” on the square. The center of the “X” is the center of the square. Drill a 2” hole through the middle of the Pressure Board (see Figure 1). Drill from the tile board side to avoid damaging the tile board. You now have a completed Pressure Board.
Figure 1 – Side view of Pressure Board

- 18” square x ¾” thick boards are glued and screwed together
- 2” hole cut in center of Pressure Board
- 3/4” hardwood plywood or Medium Density Fiberboard

Figure 2 – top view of Pressure Board

- Tileboard screwed on – not glued
- 1/8” thick replaceable hard surface – like tileboard or masonite

- 2” diameter hole
- 18” square x ¾” thick boards
- 2” diameter hole
- 18” square x ¾” thick boards
- 2” diameter hole
Building the Tester Base

The Tester Base is basically built around a 1” (OD or outer diameter) pipe floor flange. The floor flange is needed to hold the Safety Pole perpendicular to the surface of the Tester Base. The Safety Pole is a 27” long piece of 1” (OD) pipe threaded at one end and screwed into the floor flange. When screwed into the flange, the top of the Safety Pole should reach a height of 24” as measured from the top surface of the Tester Base. (pipe can be cut to exact length once construction is complete) There are two 12” pipe extensions.

Instructions on how to make the extension poles are explained later. Like the Pressure Board, the Tester Base is 18” x 18”. It also has a replaceable hard surface on the side facing the Structure. Figure 3 provides a crude “exploded side view” of the Tester Base.

The loading on the Tester Base isn’t as complex as the loading on the Pressure Board (or Safety Supports). Consequently, MDF works almost as well as hardwood plywood for use in the Tester Base. To build the Tester Base, begin with a five 18” squares of plywood (MDF). For two boards, draw an “X” between the corners and cut holes slightly larger than the full diameter of the floor flange (2nd and 3rd board from bottom shown in Fig. 3).

On the bottom board, mark a center X and position the floor flange in the middle and rotate the floor flange so the lines of the “X” are visible through the middle of the four attachment holes of the floor flange. Mark these locations and drill 5/16” holes through the MDF. These holes allow the countersunk screw bolts that will hold the floor flange to the bottom board. The floor flanges are rarely perfectly “square” – some “shimming” of the flange is usually needed to make the Safety Pole perfectly perpendicular to the Tester Base. The 2nd and 3rd board are fastened to this bottom board with deck screws. (see Fig. 3) Do a final tightening of the flange to the bottom board while checking squareness.

For the 4th and 5th board, mark an X in the center and drill out a hole slightly larger than the iron pipe which fits in the flange. Attach these two boards to the rest of the tester base as shown in Fig. 3.

One 18” square piece of “replaceable hard surface” like that used on the Pressure Board will the final testing surface. A hole slightly larger than the pipe needs to be drilled in the center of the “hard surface”, but it will not be attached until after the corner posts are fastened because the 4” x 4” cutouts in each corner need to be measured and removed.

It will be a good idea to cover all countersunk screw heads on the bottom surface with a heavy duty tape such as duct tape.

The pieces of the Tester Base don’t have to be “tightly bound” together – because gravity will do that as weight is applied. In fact, since it might be necessary to remove the floor flange from time to time, it would be a mistake to do anything that might make it hard to get access to the bolts holding it on. However, it makes sense to at least “loosely tie” all these sheets together (with a few screws) so they don’t slip around.
Figure 3 - Side view of tester base showing 5 layers and position of flange

- Replaceable hard surface – like tileboard or masonite – tacked on with small screws
- Safety Pole: piece of 1” (OD) pipe threaded at only one end
- 4x4” cutouts for corner Safety Supports
- Deck screws to hold plywood together
- Countersunk bolts attaching floor flange to lower piece of plywood
- Floor flange bolted to top of bottom piece of plywood
Building the Safety Support

4 x 4 Corner Supports that bolt into Tester Base
The key thing in building a Safety Support is that it must be strong enough to prevent the Pressure Board and weights from falling all the way to the Tester Base when the Structure fails. The goal is to construct the Safety Support so it supports the Pressure Board about 7” above the Tester Base. This limits the fall to 1 – 3” (which is reasonably safe). The stack of weights can be twisting (or moving laterally) as it falls, so the Safety Support must be robust enough to support these loads as well.

The “simplest” method for providing a “Safety Support” is to use the “old style” 4 x 4 “corner supports” (see Figure x). The biggest advantage of this approach is simplicity of construction. Note: 4 x 4 lumber is typically 3 ½ x 3 ½. This is acceptable. The construction process is as follows:

1. Cut four 7 1/8 inch long pieces of 4 x 4.
2. Temporarily secure these 4 x 4 corner supports extending upwards from the corners of the tester base (without the masonite or tile board attached). (Duct tape would work well)
3. Turn the tester base over so that the assembly is resting on the four corner supports. 5/16” x 6” lag screws work well for attaching the safety supports. Start by drilling a 1” diameter countersink hole about ½” deep in each corner where the lag bolts will go. Next drill a 5/16” diameter hole in the center of each of the 1” countersunk holes. Drill these holes all the way through the base until the bit just touches the 4 x 4 safety supports. Next, drill a ¼” diameter hole about 3” deep into each of the safety supports. (If you don’t have a long drill bit, you can un-tape the safety support and drill the hole at the mark left by the 5/16” bit. Replace in the original position.)
4. Insert the lag bolts with washers and tighten with a ratchet wrench.
5. After the support columns are in place, you can then measure the 4x4 cutouts in each corner for the hard replaceable testing surface. (Masonite)
6. Fasten the hard testing surface to the tester base with small countersunk screws, far from the safety pole. (So the structure won’t rest on the screw heads.)
Figure 4 - Lag bolts used to attach corner supports
Building and attaching the Safety Shields

Four approximately 9” x 18” pieces of 1/8” thick Plexiglas or Lexan should be cut to act as Safety Shields. Depending on the design of the Safety Support, these could actually be quite a bit smaller. (1/4” Plexiglas would be better if available.)

The easiest way to attach safety shields is to use self-sticking velcro. Apply 1” square sections in each of the four corners of the plexiglass, remove the other sticky side and press the plexiglass directly to the support posts in the position that is required. Keep the top edge of the plexiglass just below the tops of the support posts. Apply a vinyl tape to the top edge of the shields to protect fingers.

Extension poles are made by gluing 6” long 3/4” OD metal rods or ¾” OD pipe into 12” long pieces of 1” OD metal pipe. (When you buy the black iron pipe, ask the store to cut a 27” length and two 12” lengths of 1” OD pipe. Also cut two 6” lengths of ¾” OD pipe or rod. (Thread only one end of the 27” length.) About 3” of the rod should extend out of the pipe when assembled. The inside diameter of the pipe is slightly larger than 3/4” – so some care needs to be exercised to make sure extension pole fits “squarely” into the Safety Pole. Metal tape (used for gutter repairs) can be used to build-up the diameter of the pipe extension so that it fits snugly into the pipe below.

When you’re all done, spray paint the tester to give it a nice finish (Auto enamel will give it that hard finish). Paste a DI logo on for a professional look at tournaments.

Figure 5 - Views of completed tester base and Pressure Board with weights
Supplies:
Views of Tester during Construction: